The traditional liquid conformal coatings offer great protection for the majority of circuit boards requiring protection. Between the standard coatings like the acrylic, urethane and silicone materials most problems can be prevented.
However, there are times when they just can’t do the job.
There can be various reasons that these conformal coatings can’t be used.
For example, they may not protect the electronics effectively enough due to an extreme environmental exposure. A good example is where the circuit boards are required to be waterproofed or immersed in water. In this case, the liquid coatings may be inadequate.
Another reason may be cost. The value of the circuit board may be too low versus the cost of the coating production and material. Therefore, an alternative material and process may be required that is lower in price.
The alternative conformal coatings like the fluoropolymers can offer different effects such as creating a hydrophobic, water repellent surface.
So what alternative coatings are there to the liquid conformal coatings?
There are many alternative coatings available to the traditional conformal coating materials that can provide extremely high protection to circuit boards.
These alternative coatings include:
Parylene coatings
Fluoropolymer coatings
Molecular Vapour Deposition (MVD) coatings
Atomic Layer Deposition (ALD) coatings
Some of these coatings offer a higher level of protection or create alternative surfaces. Others are lower in cost in production.
Nexus examines them in detail.
Need to find out more?
If further information on these topics and the key question you can go to our free eBook by clicking alternative conformal coatingsnow.
If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page.
Dr Lee Hitchens, Author of Nexus
Dr Lee Hitchens is the author of the Nexus conformal coating website and eBook.
Send me an email at lhitchens@nexus3c.com and let me know what you think?
The defect was occurring just after the spray application of the coating. The system being used was a selective robot applying an acrylic solvent based conformal coating.
So far so good. Nothing complex in the process. But, the de-wetting was occurring all over the circuit.
I asked if the problem had always been there?
The answer was no, it had just started to occur in the last 2-3 weeks. Hence, my being there.
So, we dug a little deeper into the process. Without going into all the details it turns out that they had changed the solder resist and this was the root cause of the problem.
The original solder resist was fine. The conformal coating wet the surface perfectly.
However, the new solder resist had a lower surface energy and now the conformal coating was de-wetting all over the surface.
The conformal coating was applied to the circuit board but would not adhere to the solder resist.
Well, the company had originally matched the material and process to the circuit board. They were compatible. They had applied a holistic approach to the process.
But, someone decided to change a material part of the circuit board. The failure came in not applying the holistic approach to check for compatibility of the three parts, the material, process and board.
This resulted in lots of scrap circuits, a defective conformal coating process and a company discussing whether to scrap a lot of bare laminates or whether they could salvage them.
How to avoid conformal coating problems?
If you are going to use a conformal coating check that all the parts are compatible. That is the material, process and board.
If you are going to change a part of the process, repeat the tests. Don’t assume the process is instantly drop in regardless of what you are told.
Need further help?
If further information on these topics and the key question you can go to our free eBook by clicking the conformal coating holistic approach now.
If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page.
Dr Lee Hitchens, Author of Nexus
Dr Lee Hitchens is the author of the Nexus conformal coating website and eBook.
Send me an email at lhitchens@nexus3c.com and let me know what you think?
When I consider circuit board failures in the field, and they are due to the conformal coating, then I immediately think of two reasons for it occurring.
The first reason is that the wrong conformal coating material was selected.That is during the material specification the wrong material was chosen and it cannot protect the circuit regardless of how it is applied.
The second reason is that the conformal coating was applied incorrectly. That is the right material is being used but the application process is failing.
Molecular Vapour Deposition (MVD) is a vacuum deposition process that provides excellent barrier properties and surface energy control.
The MVD process produces a highly conformal thin film coating, typically less than 100nm.
Where is MVD used?
MVD technology is used to produce coatings such as:
Electrical insulation films
Liquid and vapor moisture barriers
Corrosion and oxidation barriers
Lubrication and anti-stiction films
Hydrophobic or hydrophilic surfaces
Biocompatible surfaces
Reactive coatings
The molecular vapour deposition (MVD) process can produce both hydrophobic and hydrophilic coatings
How does the MVD process actually work?
The process works by allowing small amounts of gas-phase chemicals introduced into the process chamber and reacted at the surface to form thin films.
Unlike traditional CVD and ALD flow processes, the MVD reaction takes place in a chamber under static pressure resulting in extremely low chemical use.
Samples are typically maintained at temperatures ranging from 30°C to 80°C during deposition.
Where is MVD used in technology applications?
Typical applications include:
Non-stick coatings for sophisticated microelectronics and parts found in smartphones, computers, displays, automobile sensors, and hard disks
Non-wetting coatings used on inkjet nozzles
Surface functionalization for biological assays
Anti-fouling and lubrication coatings for parts implanted in the human eye
Dielectric films used in virtual reality displays
Release layers for nano-imprint lithography
MVD is used in many different modern day electronics
What are the advantages of MVD
Complete coverage
The MVD process is designed to produce 100% coverage of all exposed surfaces on complex parts.
Conformal coating thickness control
The MVD process manages film thickness and thickness uniformity by dosing exact amounts of precursors and controlling reaction times.
Many other processes like Parylene are dependent upon amount of dimer and will continue to deposit successive polymer layers until it is completely used up causing thickness variation across the chamber.
Cost of process
MVD does appear to be a much faster process compared to Parylene to create like for like protection.
Also, it does not require silane pre-treatment and it only requires small amounts of chemicals. As a result, PCB processing cost could be very low compared to Parylene.
Multiple laminate layers are possible
MVD allows single component layers for basic barrier protection or customized laminate layering for complex requirements.
Most other films including Parylene are single component layers.
Water vapor transmission rate (WVTR) is lower than Parylene
The WVTR < 0.1 g/m2-day for a fast deposition time and < 0.00001 g/m2-day for a longer deposition time.
Parylene WVTR is typically 0.5 g/m2-day
Light transmission
MVD films are optically transparent and do not affect light transmission or reflection due to the relatively low coating thickness.
Electrical insulation
A component in the MVD coating is a flexible ceramic layer that acts to help preserve electrical isolation over time.
This can give a highly insulating coating finish.
Pinhole-free
MVD films are pinhole-free at a nanometer level thickness.
Parylene and some other materials are only pinhole-free at micron levels.
Coating stability
Coatings stable up to 450°C environment.
Ease-of-Use
The MVD system is fully automated and requires only a push of a button to run a process recipe.
If further information on these topics and the key question you can go to our free eBook by clicking molecular vapour deposition (MVD) now.
If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page.
Dr Lee Hitchens, Author of Nexus
Dr Lee Hitchens is the author of the Nexus conformal coating website and eBook.
Send me an email at lhitchens@nexus3c.com and let me know what you think?
Of all the questions I am asked related to cleaning the most frequent is
“Do I need to clean my circuit board before conformal coating?”.
If only it was simple to answer!
Generally, cleaning of a circuit board before conformal coating application is desirable. For Parylene this requirement may be even more important due to the bonding issues of the material.
However, it may not be essential.
Ultimately, the cleanliness of the circuit can be crucial for both the short-term production process and the long-term reliability of the circuit.
But, its difficult to know for sure if you need to clean until you complete some trials.
For the process it is difficult to know until you attempt to apply the conformal coating in production.
The need to see the area being masked to ensure complete coverage and adhesion is paramount in ensuring that your conformal coating is masked correctly and does not creep under the masking tape. ET501G is not only the only commercially available ‘Silicone Free’ tape but is translucent allowing a clear view of what is masked and its full adhesion.
Elder supply ET501G as slit rolls or Dots and are able to convert to your required size’s in order to suit your every masking requirement.
Nexus are preparing a new section for its eBook on conformal coating Process Control.
We are aiming to publish this in September 2016.
The section will cover all aspects of the topic including all of the key process control variables that affect production including the equipment, materials and people involved.
The Nexus eBook section on Process Control of conformal coatings will examine many of the areas that give you the key to the perfect production line.
Since Nexus is peer reviewed and we want the content to be relevant we are asking if anyone would like to add input into the section?
Help could be given in the form of guidance on topics and technical input and expertise on a particular area.
Let us know if this is of interest and get in touch with me directly by email lhitchens@nexus3c.com or mobile +44 7862 253321.
I can show you what we are planning and perhaps you can guide us in the final format.