What are the different techniques for cleaning a circuit board before conformal coating application?

NEXUS1
Cleaning circuit boards before conformal coating is a huge topic by itself. This is because cleaning circuit boards can be challenging.

However, successful cleaning of electronic circuits can be achieved by a variety of techniques.

The main methods of cleaning can include:
• Aqueous wash
• Semi-aqueous wash
• Solvent & chemical wash
• Plasma cleaning

The key to success in cleaning circuit boards is similar to the success made with conformal coating. You need to match the cleaning process, the cleaning materials and the circuit board together.

If you do this then this will give you the best results for cleaning the circuit board assembly.


Why clean circuit boards before conformal coating?

The cleaning of a printed circuit board (PCB) before conformal coating application is normally done for two key reasons:

These are:
• Contamination removal
• Process improvement

They have different effects on the lifetime of the circuit board but can be equally important.


What types of contamination may be present on a circuit board?

Cleaning is used to remove many different types of contaminants from the manufacturing and assembly processes.

The residues can come from:
• Board laminate manufacture
• Component manufacture
• Soldering assembly processes (fluxes)
• Glue and ruggedizing processes
• Operator handling (finger prints, hair)
• Machine contamination (oils and greases)
• Environmental contamination (dust)

Removing the contamination may be a priority depending on their harmfulness.


Need to find out more?

Click conformal coating cleaning for further information or contact us directly and we can help you.

If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page or our free conformal coating eBook.

How do I selective apply my conformal coating without using masking?

Selective spraying of conformal coating using an automated robot system is one of the widest used application methods in high volume processing.

The principle is that the conformal coating is applied selectively by a small spray gun to the circuit board to the areas requiring coating only.

The selective process deliberately does not apply the conformal coating to areas that normally require masking such as connectors and other components.

This selective application of the conformal coating to the circuit board can avoid using a time consuming masking process and costs can normally be reduced.


What equipment do you need for selective spraying?

A specialist robotic system designed for application of conformal coatings is normally required for selective coating.

The robotic system will be fitted with various conformal coating spray valves that apply the different types of conformal coating material to the circuit board using different spray patterns.

The level of movement of the robot can vary with systems having three, four, five and even six axes of movement for the spray valves.

Want to find out more about application of conformal coatings to circuit boards by selective robots?

Click to find out more about questions such as:

  1. What equipment do you need for selective spraying?
  2. What specialist valves are required for applying different types of conformal coating?
  3. Which conformal coatings can be used in selective spraying?
  4. Is selective spraying of conformal coating a complex process?
  5. How cost effective is selective spraying of conformal coating as a process?
  6. What variables control the quality of the conformal coating finish in selective spraying?
  7. What are five advantages of the selective spray conformal coating process?
  8. What are five disadvantages of the selective spray conformal coating process?

Need to find out more?

Go directly to our conformal coating selective spray application section or contact us directly and we can help you.

If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page or our free conformal coating eBook.

Images 1 and 2 courtesy of PVA (Precision Valve Automation).

How do I spray coat my printed circuit board with conformal coating?

Nexus 1Batch spraying of conformal coating on printed circuit board assemblies (PCBA) is one of the most widely used techniques in low and medium volume production processing.

Typically, using either a compressed air spray gun or an aerosol, the conformal coating is sprayed across the whole of the circuit board to provide the protection it requires.

The batch spray process can produce a high quality conformal coating finish that gives the best protection due to good tip edge coverage of components.

However, it is not a selective process and all parts are coated on the circuit board.

Therefore, masking may be required to protect components that must not be conformal coated.


What is a typical spray process for application of the conformal coating to the circuit board?

Nexus 2

Batch spraying using an aerosol or hand spray gun is normally a simple process.

A typical method of application for spraying is as follows:

  1. Dilute the conformal coating with thinners according to the manufacturers recommended instructions (typically the viscosity is close to 24cps and almost like water).
  2. Mix the blend thoroughly but without creating bubbles (if bubbles occur wait for them to dissipate) and apply a test pattern to ensure the material from the spray gun is flowing properly.
  3. If “spider webs” occur (similar to candy floss in the air) then dilute further with more thinning solvents.
  4. Position the circuit board horizontally
in front of the spray gun operator.
  5. Hold the spray gun at a 45° angle and at the recommended distance (typically 20 to 25 cm from the circuit board).
  6. Spray a thin and uniform coat onto the circuit board with an even motion using “spray and release” strokes in a raster pattern. Do not over apply too much liquid.
  7. Turn the circuit board 90°and repeat until the board has completed one complete 360° rotation.
  8. If a second coat is required, wait 2-3 minutes (may be longer with certain solvent types so check manufacturers recommended instructions) and repeat steps 5-7.

Once complete follow the cure instructions for the coating on the circuit board.


Need to find out more?

Go directly to our conformal coating batch spraying section or contact us directly and we can help you.

If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page or our free conformal coating eBook.

How do I dip coat my circuit board with conformal coating?

 

NEXUS1

Dip coating is a traditional conformal coating application method that has been used to conformal coat circuit boards for a very long time.

The printed circuit board (PCB) is dipped into a tank of conformal coating liquid. This can be complete submersion or partial dip.

The board can be dipped vertically, horizontally or at another angle. The board can be dipped manually or automatically.

The board is removed from the coating and the excess conformal coating drains away.

This leaves a conformal coated circuit board.


The key areas for dipping with conformal coating

Find out more by clicking these links:


Need to find out more?

Go directly to our conformal coating dip section or contact us directly and we can help you.

If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page or our free conformal coating eBook.

How do I measure conformal coating thickness?

 

nexus1Measuring the exact thickness of your conformal coating across the whole of a circuit board is not simple.

In fact, due to the geometry of the components and the fact that the coating is measured in microns, it makes this task almost impossible.

However, what you can do is measured the thickness of the conformal coating in a few key places and use the thickness information found to infer how the coating coverage is for the rest of the board.

This is how nearly all companies measure conformal coating thickness.


So, how is the conformal coating thickness measured on a circuit board?

There are several ways to measure the conformal coating thickness on a printed circuit board (PCB).

The methods used can be for either a dry or wet conformal coating.

These techniques include:

  • Non-destructive eddy current system
  • Micrometer screw gauge
  • Wet film gauge

These techniques are explored further below.


Non-destructive eddy current system

A fast method for measuring conformal coating thickness after drying is a system using eddy currents.

The process works by placing the test probe head flat on the surface of the conformal coating and a measurement taken.

The system provides an immediate repeatable result for thickness measurement of conformal coating.

The process is quick and accurate to ±1 um. Using a gauge and flying probe also means the measurement system is extremely easy to use.

positector
Using a test probe system can quickly give you conformal coating thickness measurements without damaging the circuit board. Image from SCH Technologies

There are a couple of issues using an eddy current system like this.

First, there needs to be metal in the circuit board directly below the tested point. Otherwise, the system cannot function correctly as the eddy current will pass directly through the board.

Second, there needs to be a flat area on the board large enough for the test probe. The smallest practical probe is approximately 6mm diameter so any area smaller than this is not practical.

Finally, the surface measured for the probe needs to be flat. If not then there will be errors in the measurement. So, measuring components is extremely difficult.

To overcome these problems it may be better to measure test coupons.

Apply the conformal coating to the test coupons at the same time as the circuit board allows an easy measurement process. It also provides a permanent measurement.

In fact, test coupons are the ideal method for measuring the coating thickness, whatever the conformal coating process and method of measurement.


Micrometer screw gauge

An alternative to the eddy current system for dry film measurement is a calibrated micrometer screw gauge.

It’s a low cost, low-tech method for measuring conformal coating thickness and can normally measure down to ± 10 um.

The process is relatively simple.

First measure a point on the board or test coupon before coating. Next, apply the coating. Cure the coating well and finally re-measure at the same point.

The difference in the two measurements gives you the conformal coating thickness.

gauge-88268_640_NEXUS

A couple of pitfalls to avoid with this technique are ensuring the conformal coating is cured hard enough since if it is soft it could compact and give a false reading.

Also, do not measure one point. Take an average of at least 3 or 4 points across the coupon since this will give a better result statistically.

Again, for this technique test coupons are the ideal method.


Wet film gauge

A final method that can be used is a wet coating measurement technique that is very cost effective.

The technique uses a comb with different size patterns that is placed in the wet conformal coating and the imprint left indicates the wet film thickness.

Knowing the solids content of the material means that the material thickness can be calculated.

wet
A wet film gauge is a low cost method for measuring coating thickness while the conformal coating is wet. Using the solids content in the material and the wet film thickness allows the dry film thickness to be estimated.

Need to find out more?

Click conformal coating thickness measurement for further information or contact us directly and we can help you.

If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page or our free conformal coating eBook.

Why I have to clean my circuit board before conformal coating?

 

The cleaning of a printed circuit board (PCB) before conformal coating application is normally done for two key reasons:

These are:

  • Contamination removal
  • Process improvement

They have different effects on the lifetime of the circuit board but can be equally important.


Contamination removal

OLYMPUS DIGITAL CAMERA

The removal of contaminants from the surface of a printed circuit board before coating application could be important.

The contamination may be harmful and affect the long-term reliability of the circuit. Defects like corrosion can be devastating to a circuit performance in the field.

Also, applying the coating over the contamination will not necessarily improve the reliability.

Therefore, cleaning the PCB before coating could be advantageous.


Process improvement

OLYMPUS DIGITAL CAMERACleaning can aid the conformal coating application process.

It could avoid conformal coating defects like de-wetting and delamination. It can also help promote adhesion of the coating to the PCB.

The surface preparation can be extremely important, especially where some conformal coatings may have compatibility issues with the circuit board.

Therefore, cleaning a PCB before conformal coating may improve the coating quality and minimise defects.


What types of contamination may be present on a circuit board?

Cleaning is used to remove many different types of contaminants from the manufacturing and assembly processes.

They can affect the long-term reliability of the circuit after conformal coating.

The residues can come from many areas including:

  • Board laminate manufacture
  • Component manufacture
  • Soldering assembly processes (fluxes)
  • Glue and ruggedizing processes
  • Operator handling (finger prints, hair)
  • Machine contamination (oils and greases)
  • Environmental contamination (dust)

Removing the contamination may be a priority depending on their harmfulness.

How should I clean the printed circuit board?


Cleaning circuit boards before coating is a huge topic by itself.

Cleaning of a circuit before conformal coating at SCH 640_NexusSuccessful cleaning of circuits can be achieved by a variety of techniques.

These cleaning techniques include:

  • Aqueous
  • Semi-aqueous
  • Solvent & chemical
  • Plasma

The key to success in cleaning is similar to the success made with coating.

You need to match the cleaning process, materials and the circuit board together.

This will give the best results for application of the conformal coating.


How do I validate my cleaning process?

There are many techniques that can be used to measure cleanliness. They include many IPC test methods.

The techniques available include:

  • Ionic Contamination Testing (ROSE)
  • Ion Chromatography (IC) or High Performance Ion Chromatography (HPLC)
  • Surface Insulation Resistance (SIR) testing

Further information can be found in the IPC HDBK 001 on different cleanliness assessment methods or talk to us.


Need to find out more?

Click conformal coating cleaning for further information or contact us directly and we can help you.

If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page or our free conformal coating eBook.

How do I brush coat my conformal coating?

The application of a conformal coating using a brush to “paint” on the material to the circuit board is a common practice all over the world.

Generally, it is done as a final touch up process after the main application method is used.

However, it can also be done in mainstream production.

Conformal coating brushing in an inspection booth_NEXUS1

Applying the conformal coating

The operator according to the requirements of the circuit board applies the conformal coating selectively with the brush.

Areas not be coated are avoided.

The key for success with brushing conformal coating is the technique of application.

The correct method is to flow the coating on. The coating should be loaded on to the brush and flowed onto the circuit.

The material should not be brushed on like paint.

Screenshot of Nexus brush coating
Watch a video on brushing conformal coating.

Need to find out more?

Click conformal coating brushing for further information or contact us directly and we can help you.

If you are new to Nexus and our work on conformal coatings then a good place to go is our Start Here page or our free conformal coating eBook.